CHINMAYA DEGREE COLLEGE

2.6 Student Performance and Learning Outcome

2.6.1 Programme Outcomes (POs) and Course Outcomes (COs) for all

 Programmes offered by the institution are stated and displayed on website and attainment of POs and COs are evaluated Documents Attached| Sr.
 No. | Document Name |
| :--- | :--- |
| 1. | List of Department in the college |
| 2. | Programme outcome |
| 3. | Course outcome
 (a) Lesson Plan |

List of Department in the College

ACADEMIC STAFF

Principal
Prof. Alok Kumar
Department of Chemistry

1. Dr.AlokAgarwal (Associate Professor) Incharge
2. Dr.A.S. Singh (Associate Professor)
3. To be appointed
4. To be appointed
5. To be appointed
6. To be appointed
7. To be appointed

Department of Physics

1. Dr. P. K. Sharma (Associate Professor) Incharge
2. Sh. B.P. Gupta (Associate Professor)
3. To be appointed
4. To be appointed
5. To be appointed
6. Tobe appointed
7. To be appointed

Department of Mathematics

1. Dr. (Mrs.) Shikha Gupta (Associate Professor) Incharge M.Sc., Ph.D.
2. To be appointed
3. To be appointed

Department of Botany

1. Dr. (Mrs.) Manisha (Associate Professor) Incharge M.Sc., D.Phil.
2. To be appointed
3. To be appointed

Department of Zoology

1. Dr.Ajay Kumar (Associate Professor) Incharge M.Sc., Ph.D.
2. To be appointed
3. To be appointed
4. To be appointed
5. To be appointed
6. To be appointed
7. To be appointed

Department of Microbiology

1. Dr. Deepika Upadhyay, Incharge
2. To be appointed
3. Tobeappointed

Department of Computer Science

1. Dr. Vashno Das Sharma, Incharge
2. To be appointed
3. To be appointed
4. To be appointed

Department of Biotechnology

1. Dr. Swati Shukla
2. To be appointed
M.Sc.,Ph.D.
M.Sc., Ph.D.
M.Sc., Ph.D.
M.Sc., Ph.D.
M.Sc.
\square

ACADEMIC STAFF

Principal
Dr. AlokAgarwal (Officiating Principal)
DirectorSFS
Dr. Vaishno Dass Sharma
Department of Chemistry

1. Dr.AlokAgarwal (Associate Professor) Incharge
2. Dr.A.S. Singh (Associate Professor)
3. Dr. Ruchira Chowdhury (Assistant Professor) Incharge SFS
4. Ms. Kamna Chauhan, Assistant Professor
5. Dr. Geeta Badola, Assistant Professor
6. Vacant

Department of Physics
Dr. P. K. Sharma (Associate Professor) Incharge
Sh. B.P. Gupta (Associate Professor)
Dr. Omkant, (Assistant Professor) Incharge SFS
Mrs. Meenu Malik, Assistant Professor
Dr. Amar Deep, Assistant Professor
6. Ms. Jagrati Tyagi, Assistant Professor
7. Ms. Shivani Tyagi, Assistant Professor

Department of Mathematics

1. Mrs. Surbhi Gupta, (Assistant Professor) Incharge SFS

Ms. Himani Sharma, Assistant Professor
Vacant
Department of Botany

1. Dr. (Mrs.) Manisha (Associate Professor) Incharge

Dr. Madhu Sharma, (Assistant Professor) Incharge SFS
Vacant
Department of Zoology

1. Dr. Ajay Kumar (Associate Professor) Incharge
2. Dr. Sandhya Vaid, (Assistant Professor) Incharge SFS
3. Ms. Shaily, Assistant Professor
4. Dr. Shikha Gaur, Assistant Professor
5. Vacant

Department of Microbiology

1. Dr. Deepika, (Assistant Professor) Incharge SFS

Sh. Himanshu Singh, Assistant Professor
Ms. Arti Thakur, Assistant Professor
Dr. Nidhi Singh Chauhan, Assistant Professor
Department of Computer Science

1. Dr. Vaishno Dass Sharma, (Assistant Professor) Incharge SFS

Sh. Santosh Kumar, Assistant Professor
Sh. Ankur Kumar, Assistant Professor
Sh. Hitesh Pujari, Assistant Professor
Sh. Rishabh Narayan, Assistant Professor
Department of Biotechnology

1. Dr. Swati Shukla (Assistant Professor) Incharge SFS
2. Dr. Jyoti Choudhary, Assistant Professor
M.Sc., Ph.D.
M.Sc., Ph.D.
M.Sc., Ph.D.
M.Sc., Ph.D.
M.Sc., Ph.D
M.Sc.
M.Sc., Ph.D
M.Sc., Ph.D.
M.Sc.
M.Sc., Ph.D
M.Sc.
M.Sc., Ph.D
M.Sc.
M.Sc.
M.Sc.
M.Sc.
M.Sc., Ph.D
M.Sc., Ph.D
M.Sc., Ph.D
M.Sc., Ph.D
M.Sc.
M.Sc., Ph.D
M.Sc., Ph.D
M.Sc.
M.Sc.
M.Sc., Ph.D

MCA., Ph.D.
M.Sc. (CS)

MCA
MCA
MCA
M.Sc., Ph.D
M.Sc., Ph.D

ACADEMIC STAFF

Principal
Dr. Alok Agarwal (Officiating Principal)
Director SFS
Dr. Vaishno Dass Sharma
Department of Chemistry

1. Dr. AlokAgarwal (Associate Professor) Incharge

Dr.A.S. Singh (Associate Professor)
Dr. Ruchira Chowdhury (Assistant Professor) Incharge SFS
Dr. Geeta Badola, Assistant Professor
5. Ms. Anju Sharma, Assistant Professor
6. Ms. Shivani, Assistant Professor
7. Ms. Shivani Chouhan, Assistant Professor Department of Physics

1. Dr. P.K. Sharma (Associate Professor) Incharge
2. Sh. B.P. Gupta (Associate Professor)
3. Dr. Omkant, (Assistant Professor) Incharge SFS
4. Dr. Amar Deep, Assistant Professor
5. Ms. Jagrati Tyagi, Assistant Professor
6. Ms. Shivani Tyagi, Assistant Professor Department of Mathematics
7. Mrs. Surbhi Gupta, (Assistant Professor) Incharge SFS
8. Ms. Himani Sharma, Assistant Professor
9. Vacant

Department of Botany

1. Dr. (Mrs.) Manisha (Associate Professor) Incharge
2. Dr. Madhu Sharma, (Assistant Professor) Incharge SFS
3. Ms. Ayushi Dhiman, Assistant Professor
4. Ms.Kiran Shumalia, Assistant Professor

Department of Zoology

1. Dr.Ajay Kumar (Associate Professor) Incharge
2. Dr. Sandhya Vaid, (Assistant Professor) Incharge SFS
3. Dr. Shikha Gaur, Assistant Professor
4. Ms. Prerna Rajput, Assistant Professor
5. Ms. Versha, Assistant Professor

Department of Microbiology

1. Dr. Deepika, (Assistant Professor) Incharge SFS
2. Sh. Himanshu Singh, Assistant Professor
3. Dr. Nidhi Singh Chauhan, Assistant Professor
4. Ms. Divya Singh, Assistant Professor

Department of Computer Science

1. Dr. Vaishno Dass Sharma, (Assistant Professor) Incharge SFS
2. Sh. Santosh Kumar, Assistant Professor
3. Sh. Ankur Kumar, Assistant Professor
4. Sh. Rishabh Narayan, Assistant Professor
5. Ms. Himangi Sharma, Assistant Professor

Department of Biotechnology

1. Dr. Swati Shukla (Assistant Professor) Incharge SFS
2. Dr. Jyoti Choudhary, Assistant Professor
M.Sc., Ph.D.
M.Sc., Ph.D.
M.Sc., Ph.D.
M.Sc., Ph.D.
M.Sc., Ph.D
M.Sc., Ph.D
M.Sc.
M.Sc.
M.Sc.
M.Sc., Ph.D.
M.Sc.
M.Sc., Ph.D
M.Sc., Ph.D
M.Sc.
M.Sc.
M.Sc.
M.Sc.
M.Sc., Ph.D
M.Sc., Ph.D
M.Sc.
M.Sc.
M.Sc., Ph.D
M.Sc., Ph.D
M.Sc., Ph.D
M.Sc.
M.Sc.
M.Sc., Ph.D
M.Sc.
M.Sc., Ph.D
M.Sc.

MCA., Ph.D.
M.Sc. (CS)

MCA
MCA
M.Sc.
M.Sc., Ph.D
M.Sc., Ph.D

ACADEMIC STAFF

Principal

Dr. AlokAgarwal (Officiating Principal)
Director SFS
Dr. Vaishno Dass Sharma
Department of Chemistry

1. Dr. AlokAgarwal (Associate Professor) Incharge
2. Dr.A.S. Singh (Associate Professor)
3. Dr. Ruchira Chowdhury (Assistant Professor) Incharge SFS
4. Dr. Geeta Badola, Assistant Professor
5. Ms. Rakhi Goyal, Assistant Professor
6. Ms. Shivani Chouhan, Assistant Professor
7. Ms.Apoorva Shotri

Department of Physics

1. Dr. P. K. Sharma (Associate Professor) Incharge
2. Sh. B.P. Gupta (Associate Professor)
3. Dr. Om Kant, (Assistant Professor) Incharge SFS
4. Dr.Amar Deep, Assistant Professor
5. Ms. Jagrati Tyagi, Assistant Professor
6. Ms. Shivani Tyagi, Assistant Professor

Department of Mathematics

1. Mrs. Surbhi Gupta, (Assistant Professor) Incharge SFS
2. Vacant
3. Vacant

Department of Botany

1. Dr. (Mrs.) Manisha (Associate Professor) Incharge
2. Dr. Madhu Sharma, (Assistant Professor) Incharge SFS
3. Ms. Nevadita Singh, Assistant Professor
4. Ms.Kiran Shumalia, Assistant Professor

Department of Zoology

1. Vacant
2. Dr. Sandhya Vaid, (Assistant Professor) Incharge SFS
3. Ms Meenu Tomar, Assistant Professor
4. Ms. Prerna Rajput, Assistant Professor
5. Ms. Versha, Assistant Professor

Department of Microbiology

1. Dr. Deepika, (Assistant Professor) Incharge SFS
2. Sh. Himanshu Singh, Assistant Professor
3. Dr. Nidhi Singh Chauhan, Assistant Professor
4. Ms. Divya Singh, Assistant Professor

Department of Computer Science

1. Dr. Vaishno Dass Sharma, (Assistant Professor) Incharge SFS
2. Sh. Santosh Kumar, Assistant Professor
3. Sh. Ankur Kumar, Assistant Professor
4. Vacant

Department of Biotechnology

1. Dr. Swati Shukla (Assistant Professor) Incharge SFS M.Sc., Ph.D
2. Dr. Jyoti Choudhary, Assistant Professor
M.Sc., Ph.D
M.Sc., Ph.D
M.Sc.
M.Sc.
M.Sc.
M.Sc., Ph.D
M.Sc., Ph.D
M.Sc.
M.Sc.
M.Sc.
M.Sc., Ph.D.
M.Sc., Ph.D
M.Sc., Ph.D
M.Sc.
M.Sc.
M.Sc.
M.Sc., Ph.D.

Sc.
M.Sc., Ph.D
M.Sc.
M.Sc.
M.Sc.
M.Sc., Ph.D
M.Sc.
M.Sc., Ph.D
M.Sc.

MCA., Ph.D.
M.Sc. (CS)

MCA
M.Sc., Ph.D.
M.Sc., Ph.D.
M.Sc., Ph.D.
.Sc., Ph.D.
c.
.
.
M.Sc., Ph.D

Chinmaya Degree College, Haridwar Programme Outcomes for Students

After the completion of graduation/ post graduation students will be able to acquire the following attributes.	
PO 1	Student will be able to apply techniques, skills and tools in new contexts.
PO 2	Student will be able to analyses problems objectively and find solutions
PO 3	Student will be acquire knowledge of fundamentals, principles and methods
PO 4	Student will be able to use skills acquired during the programme in real life situations.
PO 5	Student will be able to use appropriate individual and group behavior in real life situations.
PO 6	Students will be Effective speaking, active listening, giving and receiving feedback, empathy and respect for others.
PO 7	Student will be able to understand and interact with people belonging to diverse backgrounds(social, cultural, economic, religious and linguistic) and use culture specific norms.
PO 8	Students will be able to use natural and community resources with a sense of responsibility and engage in environmentally sustainable practices.
PO 9	Student will be able to practice ethics in public life and demonstrate adherence to human values.
PO 10	Student will be Motivation to learn and use new and beneficial things for personal and societal benefit.

Course Outcomes
 Teaching Plan

B.Sc. I Semester

Core Course - Physics
Mechanies

S. No.	Units	Topics	Lectures Required
1.	Vectors	1.Vector algebra - intro - Scalar and vector triple products - Properties of vector Triple Products 2. Reciprocal set of vectors - definition 3. Vector derivatives - intro - Differentiation of a vector w.r.t. a scalar - expl. - Differentiation of sum and products - Partial differentiation of vectors - Radial and transverse velocity 4. Vector integrals - intro - Scalar and vector field - Line, Surface \& Volume integral - explanation - Gradient, Divergence \& curl of a vector field	05.
2.	Ordinary Differential Equation	1. Differential Equation - intro - Types of D.E. -ordinary and partial - Order \& degree of differential equation 2. Linear and non-linear differential equations 3. Solution of differential equation- methods expl. 4. Equation of the first order and first degree - expl. 5. Homogeneous \& linear equations - explanation - Solution of Linear differential equation	06

S.No.	Units	Topics	Lectures Required
5.	Rotational Motion	1. Torque - intro - Translational \& Rotational motion - explanation - Angular velocity \& Angular acceleration - def. - Torque acting on a particle - definition - Angular momentum of a particle - definition - Relation between torque \& angular momentum 2. Moment of Inertia - definition - radius of gyration - definition - K.E. of a rotating body - definition - Angular momentum of a rotating body 3. Theorem of parallel axis - proof 4. Theorem of perpendicular axis - proof 5. Conservation of Angular momentum -proof	06
6.	Gravitation	1. Central forces - definition - areal velocity remains constant - proof 2. Kepler's laws of planetary motion - theory/proof - The Law of elliptical orbits - explanation - The Law of areas - explanation - The Harmonic law - explanation - Conclusion of Newton from Kepler's laws 3. Newton's law of Gravitation - definition 4. Period of motion of a planet about sun - expl.	08

S.No.	Units	Topics	Lectures Required
		- Effect of temperature on viscosity - explanation 7. Stokes' law of viscous force - theory - Calculation of terminal velocity - viscosity of highly viscous liquid - velocity of rain drops	
8.	Elasticity	1. Elasticity - intro - Perfectly elastic - explanation - Stress, strain, shear - definition 2. Hook's law - definition - Behaviour of wire under increasing load - theory 3. Young's modulus, Bulk modulus - definition 4. Modulus of Rigidity, Poisson's ratio - definition - Relation among elastic constants - proof 5. Difference b / w Angle of twist \& angle of shear - Twisting couple on a cylindrical rod - proof - Torsional rigidity - definition 6. Determination of Modulus of Rigidity - Barton's Statical method - theory \& method - Torsional oscillation - explanation - Maxwell's Needle - theory \& procedure 7. Bending Beam method - theory \& method - Longitudinal filament, Neutral surface- Def. - Plane of Bending, Neutral Axis - Def.	\ldots

-
\because

B.Sc. III Semester

Core Course - Physics

Thermal Physics and Statistical Mechanics

S.No.	Units	Topics	Lectures Required
1.	Thermodynamic description of System	1. System and its surroundings - Introduction 2. Zeroth law of thermodynamics and temperature - Explanation with diff. between temp. \& heat	14
3. Equivalence of heat work - explanation			
- Thermodynamic system - intro			
- external work \& internal work - intro			
4. Dependence of work done on the path			
- cyclic process - explanation			
5. Internal energy of a system - intro			
- First law of thermodynamics - explanation			
6. Some Thermodynamic processes - explanation			
- Cyclic, isobaric, isochoric, adiabatic			

S.No.	Units	Topics	Lectures Required
3.	Kinetic Theory of Gases	1. Kinetic theory of matter - explanation 2. kinetic theory of gases - explanation - Pressure exerted by a gas - expl. \& derivation - rms speed - derivation \& application 3. Kinetic interpretation of temperature - explanation 4. Law of equipartition of energy - explanation - degrees of freedom - calculation of ratio of specific heats for mono, Dia and triatomic gases 5. Maxwell's law of distribution of speeds - deriv. - calculation of average speed - calculation of rms speed - calculation of most probable speed - momentum wise distribution of speeds - energy wise distribution of speeds 6. Mean free path - explanation and derivation 7. Transport Phenomena - theory - viscosity of a gas - theory and derivation - Thermal conductivity of a gas - theory \& deriv. - Diffusion of gases - theory and derivation	12

S.No.	Units	Topics	Lectures Required
	.	12. Carnot's ideal refrigerator - Coefficient of performance 13. Second law of thermodynamics - explanation 14. Carnot's theorem - explanation 15. Absolute scale of temperature 16. Entropy - physical significance - intro - change in reversible \& irreversible cycle - entropy \& second law - explanation - carnot cycle on T-S diagram - Entropy change in various phenomenon 17. Third law of thermodynamics - Nernst heat theorem - Entropy and disorder	
2.	Thermodynamic Potentials	1. Maxwell's four thermodynamic relations - explanation \& derivation 2. Clausius clapeyron equation - derivation 3. expression for $\mathrm{Cp}-\mathrm{Cv}$ - derivation 4. First and second TdS equation - derivation 5. Joule-Thomson effect - explanation \& deriv. 6. Thermodynamic Potentials - explanation - Internal energy, Helmholtz function, Enthalpy Gibbs function	10

S.No.	Units	Topics	Lectures Required
.		8. Beats - theory with graph - calculation of number of beats per second 9. Formation of Stationary waves -theory - characteristics of stationary waves 10. Phase and group velocity - definition \& deriv. - relation between group \& wave velocity	\cdots
3.	Oscillations	1. Simple harmonic motion - intro - various terms explained - Differential equation of motion - Energy of S.H.M. - Potential \& kinetic - Time average \& position average of energy 2. Free and damped oscillation - intro - equation of damped harmonic oscillator - Power dissipation in damped harmonic oscillator - Quality factor and relaxation time	06
4.	Sound	1. Free and forced oscillations - intro - resonance - explanation - equation of forced oscillation - sharpness of resonance 2. Fourier's theorem - intro - evaluation of constants \therefore Analysis of saw tooth wave - Analysis of square wave	06

B.Sc. IV Semester

Core Course - Physics
Waves and Optics
A. Waves

S.No.	Units	Topics	Lectures Required
1.	Superposition of Harmonic Waves	1. Principle of superposition - theory -Linear superposition - Addition of two S.H.M. 2. Lissajous figures - theory - Perpendicular superposition - resultant with frequency in ratio 1:1 \& 1:2	06
- graphical and analytical methods			
- Methods of obtaining Lissajous figures			
- Application of Lissajous figures			

S.No. Units	Topics	Lectures Required	
		3. Fresenl's Biprism - theory \& derivation - calculation of fringe width \& experimental set-up - thickness of a plate 4. Phase change on reflection (stokes' treatment) 5. Lloyd's mirror - theory \& derivation - difference between biprism and Lloyd 6. Interference in thin films (division of amplitude) - condition of maxima \& minima - Wedge-shaped film - theory \& derivation 7. Formation of Newton's rings- - theory \& derivation - diameter of bright and dark rings - experimental arrangement	
		- determination of refractive index of a liquid - general expression for rings	
8. Fringes of equal thickness and equal inclination			
- Construction \& working			
- Adjustment of the M.I.			

B. Optics

S.No.	Units	Topics	Lectures Required
5.	Wave theory of light	1. Nature of light - intro 2. Huygens' principle - theory - Reflection of a plane wave - Refraction of a plane wave - Total Internal Reflection - Refraction through a lens	03
6.	Interference	1. Interference of light - intro 2. Young's experiment (division of wavefront)	
- Resultant intensity of two interfering waves			
- fringe width			
- conditions for interference of light			
- coherent sources			

S.No.	Units	Topics	Lectures Required
3.	Wave-Particle Duality (Matter Waves)	1. De-Broglie Hypothesis of matter waves - intro - De-Broglie wavelength of matter waves - De-Broglie wavelength of Electron - Demonstration of matter waves - intro 2. Davission and Germer Experiment - explanation 3. G.P. Thomson's Experiment- theory \& proof 4. De-broglie wavelength of Helium atoms 5. Bohr Quantisation Condition -theory - Circumference of electron orbits 6. Dual nature of light and matter- explanation	06
4.	Atomic Model	1. Atomic Structure - intro - Thomson's model of Atom - Explanation - Rutherford's Nuclear Model of Atom - Expl. - Difficulties in Rutherford's model - discussion - Bohr's Quantum model - Wave Mechanical model 2. Bohr theory of Hydrogen Spectrum - intro - Bohr's two postulates - explanation - Emission of Spectrum - emission - Different series \& their explanation - Shortcomings of Bohr's theory - discussion - Bohr theory corrected for nuclear mass 3. Sommerfeld's Extension of Bohr Theory	08

B.Sc. V Semester

DSE Course - Physics

Elements of Modern Physics

S.No.	Units	Topics	Lectures Required
1.	Origin of Quantum Theory	1. Planck's Quantum hypothesis - intro - Average energy of Planck's Oscillator - proof - Planck's Radiation Formula - derivation	06
2.	Photoelectric Effect and Compton Effect	1. Photoelectric Effect - intro - Experimental observation - discussion - Dependency upon Intensity of Light - discussion	

S.No.	Units	Topics	Lectures Required
		4. Excitation \& Ionisation Potential of an atom- intro - Franck-Hertz Experiment - discussion - Interpretation of the curve 5. Bohr's Correspondence Principle - theory	
5.	Uncertainty Principle	1. Heisenberg's Uncertainty Principle - Determination of position of particle - deriv. - Diffraction of electron-beam -theory - Concept of Bohr Orbit - discussion - Uncertainty in Velocity - deriv. - Electrons in Nuclei- discussion - Complementarity Principle - discussion	04
6.	Quantum Mechanics	1. Short comings of old quantum theory - intro 2. Operators - intro - Eigenfunctions \& Eigenvalues - definition - Properties of functions and operators - Definition of an operator - Linear, Identity, Null operator - definition - Power of an operator - definition - Inverse, singular \& non-singular operators - def. 3. Postulates of wave mechanics - intro - Discussion of I, II, III \& IV postulates 4. Schrodinger's Time-dependent wave equation - theory \& derivation	15

S.No.	Units	Topics	Lectures Required
		5. Schrodinger's time-independent equation - theory \& derivation 6. Orthogonality \& Normalization o wave function - definition 7. Probability Density - derivation 8. Expectation values of dynamical variables - definition and properties 9. Different operators in Q.M. - Momentum, Velocity, Kinetic \& Total Energy - Angular momentum - definitions 10. Principle of Superpositions - definition 11. Potential Problems - Potential step - derivation - Expressions for the wave functions - Probability current densities - calculation - Reflection and Transmission Coefficients 12. Square-well with finite sides - theory \& deriv. 13. Particle in a rigid 1-dimensional box - deriv. 14. Eigen functions and Eigen values of a particle In a box - theory \& derivation 15. Particle in a 3-D Rigid box - theory \& deriv. 16. Quantum Tunnelling - intro - Rectangular potential barrier - theory \& deriv.	A

S.No.	Units	Topics	Lectures Required
		17. Particle in a finite square potential well (Non rigid) - theory \& derivation 18. The harmonic oscillator - theory \& derivation 19. Angular Momentum - intro - Calculation of diff. components of A.M.	
7.	Nuclear Physics	1. General Properties of Nucleus - intro - Nuclear size \& shapes - discussion 2. Structure of the Nucleus - intro - Consideration of nuclear size, spin, magnetic Moment, isotopes, Proton-neutron hypothesis, Nuclear Stability - Basic Properties of an atomic nucleus - angular Momentum, Parity, symmetry, magnetic dipole Moment, electric quadrupole moment - disc. 3. Packing fraction of an isotope - intro - Unified atomic mass unit - def. - Mass defect \& binding energy - def. - Binding energy curve - explanation - Angular momentum of nucleus - definition - Nuclear magnetic moment- theory \& deriv. 4. Saturation phenomenon \& exchange forces - intro - discussion \& properties of nuclear forces	\%

S.No.	Units	Topics	Lectures Required
		5. Nuclear Models - intro - Liquid drop model of nucleus - discussion - Nuclear binding energies - calculation - Short comings of Liquid-drop model - disc. 6. Semi-empirical mass formula - intro - Calculation of different energies - Application of semi-empirical mass formula 7. Natural Radioactivity - intro - Properties of alpha, beta \& gamma particles - Laws of radioactive disintegration- disc. - Calculation of Half-life \& Decay constant - Calculation of Mean life of a radioactive element - Soddy's displacement law - discussion - Law of successive disintegration and Radioactive equilibrium - theory \& proof - Radioactive dating - calculation of age of earth 8. Alpha decay - theory \& explanation 9. Beta decay - theory \& explanation - Characteristics \& experimental investigation 10. Gamma decay - theory \& explanation 11. Nuclear Reactions - theory - Conservation laws - explanation - Cross-sections of nuclear reactions - theory	

B.Sc. V Semester

SEC Course - Physics
Electronics - I

B.Sc. VI Semester

SEC Course - Physics
Electronics - II

S. No.	Units	Topics	Lectures Required
1.	Transistor Amplifiers	1. Transistor Amplifier - intro	15
		- Classification of amplifier	
		- Basic amplifier - working	
		- Study of load line graph	
		- Study of different transistor biasing	
		- Transistor equivalent circuit - working	
		- h-parameter calculation	
		2. Single stage transistor amplifier - intro	
		- CE configuration - circuit \& working	
		- CB configuration - circuit \& working	
		3. FET amplifier - intro	
		- Circuit \& working	
		4. RC coupled transistor amplifier - intro	
		- Circuit \& working	
		5. LC coupled transistor amplifier - intro	
		- Circuit \& working	
		6. TC coupled transistor amplifier - intro	
		- Circuit \& working	
		7. Noise \& distortion in amplifiers - discussion	
		8. Power Amplifiers - intro	
		- Types of power amplifiers	

Total Lectures $=\mathbf{6 0}$

S.No.	Units	Topics	Lectures Required
		- Parabolic potential well - Calculation by classical \& quantum method - Calculation of Eigen value \& probability Distribution 3. 1-D motion in step potential - intro - The single step barrier - calculation 4. The square well potential - intro \& calculation - The case of discrete energy levels \& scattering - Calculation of maximum \& minimum values of the transmittance - Infinitely deep square well 5. Rectangular potential barrier - calculation - Tunnel effect - discussion - Application of Tunnel effect	
4.	Quantum theory of hydrogen-like atoms	1. Time independent Schrodinger equation in spherical polar co-ordinates- intro - Separation of variables - Solution of the equations (quantum numbers) - Interpretation of quantum numbers 2. 3-D Harmonic Oscillator- intro \& derivation 3. Rigid Rotator - derivation 4. The hydrogen atom - intro - Solution of phi equation	10

S.No.	Units	Topics	Lectures Required
		- Commutation relation b/w position \& momentum 7. Expectation values of the dynamical variables - definition of different quantities 8. The Uncertainty principle- Statement \& expl.	
2.	Time Independent Schrodinger Equation	- Examples of uncertainty principle - intro \& derivation - Stationary state (time independent) solution	

B.Sc. VI Semester

DSE Course - Physics
Quantum Mechanics

S.No.	Units	Topics	Lectures Required
1.	Time Dependent Schrodinger Equation	1. Schrodinger's time independent wave equation - introduction - equation of motion for a free particle - Time dependent Schrodinger equation - proof 2. Properties of wave function - discussion - Physical interpretation of wave function - expl. - Condition for physical acceptability-disc. - Probability current density/particle flux - deriv. - Normalization of wave functions - disc. 3. Solution of time dependent Schrodinger equation - calculation 4. Orthonormal Properties of wave function- calcu. 5. Eigen values and eigen functions - explanation - superposition of eigen states - proof 6. Operators - intro - definition of energy, momentum, K.E., velocity Potential energy - Theorem of commutativity and simultaneity - Converse of theorem - proof - Commutator algebra - explanation - Parity, pi \& projection operator - definition	06

S.No.	Units	Topics	Lectures Required
		- Zener diode - theory, cons. \& working - Varactor - theory, cons. \& working - Tunnel Diode - theory, cons. \& working - Photodiode - theory, cons. \& working - LED - theory, cons. \& working 3. Transistors - intro - Operation \& characteristic curves - CE configuration - Characteristic - CB configuration - Characteristic - CC configuration - Characteristic - Current amplification 4. Field Effect Transistor - intro - Theory \& Working	
3.	Rectifiers and Filters	1. Rectifiers - intro - HW rectifier - circuit \& working -FW rectifier - circuit \& working - Bridge rectifier - circuit \& working 2. Filter Circuits - intro - Series L - theory \& working - Shunt C - theory \& working - PI filter - theory \& working 3. Power Supplies - intro - Unregulated power supply - working	.

B.Sc. Semester-II

Plant Ecology and Taxonomy

B.Sc. Semester-I

Biodiversity (Microbes, Algae, Fungi and Archegoinate)

S.No.	Units	Topics	Lectures required
1.	Microbes	1. Viruses \checkmark Introduction \checkmark Discovery \checkmark General structure \checkmark Replication (general account) \checkmark DNA virus (T-phage) \checkmark Lytic \& Lysogenic cycle \checkmark RNA virus (TMV) \checkmark Economic importance 2. Bacteria \checkmark Introduction \checkmark Discovery \checkmark General characteristics \checkmark Cell structure \checkmark Bacterial ReproductionVegetative, Asexual and Recombination (Conjugation, Transformation \& Transduction) \checkmark Economic importance	5
			Total-10
2.	Algae	1. Algae \checkmark General Characteristics \checkmark Ecology and distribution \checkmark Range of thallus organization \checkmark Reproduction in algae 2. Classification of Algae 3. Morphology and life cycles of the following algae \checkmark Nostoc, Chlamydomonas, Oedosonium, Vauchoria, Fucus, Polysiphonia 4. Economic importance of bacteria	4 2 5 1
			Total-12
$3 .$	Fungi	1. Introduction \checkmark General characteristics \checkmark Ecology \& Significance \checkmark Range of Thallus Organization \checkmark Cell wall composition \checkmark Nutrition	3

	Quantitative Inheritance	2. Selection methods \checkmark For Self pollinated \checkmark For cross pollinated \checkmark For vegetatively propagated plants 3. Hybridization- Procedure, advantages \& limitations \checkmark For self pollinated \checkmark For cross pollinated \checkmark For vegetatively propagated plants 1. Quantitative Inheritance \checkmark Concept \checkmark Mechanism \checkmark Examples \checkmark Monogenic v / s Polygenic inheritance	3 3 2
			Total-16
5.	Inbreeding depression and heterosis Crop improvement and breeding	1. Inhrearing depressinn \checkmark Introduction \checkmark History \checkmark Genetic basis of inbreeding depression 2. Heterosis \checkmark Introduction \checkmark Genetic basis of Heterosis \checkmark Applications 1. Crop Improvement \& breeding \checkmark Introduction \checkmark Mutation and its role in crop improvement and breeding \checkmark Polyploidy \checkmark Distant hybridization \checkmark Role of biotechnology in crop improvement	2
			Total- 8

		\checkmark Bridges experiment \checkmark Coupling and repulsion \checkmark Recombination frequency \checkmark Genetic mapping 2. Crossing over \checkmark Concept \checkmark Crossing over in maize \checkmark Mechanism of crossing over \checkmark Types of crossing over \checkmark Significance of crossing over	4
			Total-12
3.	Miutation and Chromosomal Aberrations	1. iviutation \checkmark Introduction \checkmark General Characterstics \checkmark Role of mutation \checkmark Molecular basis of gene mutation \checkmark Error in DNA replication \checkmark Mutagens- Physical \& Chemical 2. Numerical Chromosomal Changes \checkmark Euploidy \checkmark Polyploidy \checkmark Aneuploidy 3. Structural Chromosomal changes \& its effect on genetic level \checkmark Deletions \checkmark Duplications \checkmark Inversions \checkmark Translocations	2 1 1
			Total-4
4.	Plant Breeding Methods of Crop Improvement	1. Plant Breeding \checkmark General Introduction \checkmark History of Plant breeding \checkmark Nature of plant breeding \checkmark Objectives 2. Breeding systems \checkmark Modes of Reproduction \checkmark Pollination control \checkmark Activities in plant breeding \checkmark Some important achievements \checkmark Undesirable consequences 1. Introduction \checkmark Centres of origin \checkmark Domestication of crop plants \checkmark Plant genetic resources \checkmark Acclimatization	2 3 3

B.Sc. Semester- VI Genetics and Plant Breeding

B.Sc. V Semester Cell and Molecular Blology

B.Sc. Semester- IV

Skill Enhancement Course
Plant Diversity and Human Welfare

\qquad

B.Sc. IV Semester

Plant Physiology and Metabolism

1

B.Sc. Semester-III

Plant Anatomy and Embryology

S.No	Units	Topics	Lectures Required
1.	Meristematic and Permanent Tissue	1. Meristematic Tissue \checkmark General Characterstics \checkmark Role \checkmark Types of Meristem 2. Root Apical Meristem \checkmark General introduction \checkmark Theories regarding the root apical meristem 3. Shoot Apical Meristem \checkmark General introduction \checkmark Theories regarding the shoot apical meristem 4. Permanent tissue \checkmark General characteristics \checkmark Types of Permanent tissue \checkmark Simple permanent tissueCharacteristics, types, functions. \checkmark Complex permanent tissueCharacteristics, types, functions.	2
			Total-8
2.	Organs Secondary Growth	1. Anatomy of dicot plant \checkmark Structure of dicot root, stem and leaf 2. Anatomy of monocot plant \checkmark Structure of monocot root, stem and leaf \checkmark Difference b/w dicot and monocot structures 1. Vascular cambium \checkmark Origin, structure and function \checkmark Seasonal activity	2

	Taxonomic evidences	\checkmark Flora \checkmark Keys-Single access and multi access 1. Taxonomic evidences \checkmark General introduction \checkmark Taxonomical evidences from palynology, cytology, phytochemistry, and molecular data	Total-12
			4
4.	Botanical Nomenclature Classification Biometrics, Numerical taxonomy, and cladistics	1.Botanical Nomenclature \checkmark General introduction \checkmark Rules of nomenclature \checkmark Principles of ICBN \checkmark Ranks \& Names \checkmark Typification \checkmark Author citation and valid publication \checkmark Principles of priority and its limitations 1.Types of Classification \checkmark Bentham and Hooker's system of classification \checkmark Engler and Prantl's system of classification 1.Characters \checkmark Variations \checkmark Operational Taxonomic units \checkmark Selection of Characters 2. Coding of Characters and cluster analysis 3. Phenograms \& Cladograms \checkmark Definition \checkmark Differences	4 1 1 1 1
			Total-11
5	Families	1.Taxonomy, important distinguishing characters, classification and economic importance of the following families \checkmark Ranunculaceae, Papaveraceae, Caryophyllaceae, Malvaceae, Rutaceae, Fabaceae, Apiaceae, Solanaceae, Apocynaceae, Asclepidiaceae, Acanthaceae, Lamiaceae, Euphorbiaceae, Orchidaceae, Poaceae	10

		\checkmark	Xerosere	

Day-2 \rightarrow Smog formation
Day-3 \rightarrow Oxides of $N \& C$ \& their effect
Day-4 \rightarrow Oxides of is $\$ 0$ \& their Effect
Day-5 \rightarrow Petralcum \& Minerals,
Day-6 \rightarrow Pellution by Chemicals, Chloroflweohydro-
Day-7 \rightarrow Analyctical Methods to Measure Air polculants

Day-s \rightarrow Continous Monitoring Cnstrements

SEMESTER-IV
Paper-IV (Environmental Chemintry)
Jriet-1 $\rightarrow \xrightarrow[\text { Environment }]{\text { St }}$
Day-1 \rightarrow Intraduction \& Composition of atmaspere
Day-2 \rightarrow Vertical temperature \& vertical stabilety. atmosphere.
Day3 \rightarrow Heat Budget of Earth Atmarpheric ©system.
Day-H \rightarrow Biogeochemical Cycles of Carbon.
Day-5 \rightarrow Biograchemical lycle of Nitrogen $\$$ Phosphorus.
Day-6 \rightarrow Cycle of Sulphur \& Oxygen
Day-7 \rightarrow Biodistributum of elements.
D key $\beta \rightarrow$
\# Unit-4 \rightarrow Atmosphere
say_ $1 \rightarrow$ Chemisal \& Photochenical reactions in atmasphere

Day $i \rightarrow$ Exergonic \& Endorgonic Reactuns.
Day-3 \rightarrow fy-dralysis of ATP \& syuthesis of ATP from ADP.
\# Bioinognic Chemistry
\# Bio Energetics \& ATP Cycles
Day-1 \rightarrow DNA Polymerisation.
Day-2 \rightarrow Metal Complexes in transmissim of Energy.
Day-3 \rightarrow Clucose Estorage \& Chlorophyll.
Day4 \rightarrow Photosystem, IT \& II
Day-5 \rightarrow Model Suptem:
${ }^{*}{ }_{4}^{4}$ SEMESTER-III
Paler- III (Bioinorganic, Bivorganic, BioPhysical
Chemistry - I)
\Rightarrow Biophysical Chemistry
Unit \rightarrow Biological Cells \$ its Constituents, Cell Membrane
\& Transport of ions
Day $1 \rightarrow$ Biological Cells, Enzymes.
Day-2 \rightarrow Structure \& function of Potions
Days \rightarrow DNA \& RNA in living system
Day -4 \rightarrow Helix Coil tranistion
D cay_ $5 \rightarrow$ Structure \& function of Cell Membrane
Day-6 \rightarrow Ton tramport threaigh Cell Membrane

Unit \rightarrow Bio Energetics
Day-1 Standard que Energy Change in biological reactions.

Day-4 Reactivity for aliphatic \& aromatic se et a bridgehead
Days \rightarrow Reactivity in the attacking radicals os the effect of solvent on reactivity

Day, \rightarrow Allylic halogenation (MBS)
Day-7 \rightarrow Oxidatim of aldehydes to Carboxylic acid \& Auto-oxidation
Days \rightarrow Coupling of alkynes \& arylation of Aromatic Compounds.
Day-9 \rightarrow Sandmayer Reaction
Day-10 \rightarrow Hundrdiecker Reaction

SSMEST ER-II
\# Paper-II EOrganic Chemistry]
Unit-1 \rightarrow [Aromath Electrophilic Substitution]
Day-1 \rightarrow Orientation \& Reactivity, Energy Profile diagram.
Day-2 \rightarrow Ortho-Para.Ratio, ipso attack, Orimenter in other ring system.
Day-3 \rightarrow Reactivity in subastrate \& Electrophile
Day-4 \rightarrow Vilsmeir Haak reaction, Gattor mamn Koch Reaction'

Day-5 \rightarrow Diazonium Coupling.
$\underline{\text { Unit-III }} \rightarrow$ Free Radical Reaction
Day 1 Types of free Radical Reaction
Day-2 Free Radical Subsitutim Mechanism
Day-3 Mechanism of an eromatic Subxtrate

Day-3 Irving-William Series \& Chelate effect ©
Day-4 Factors affecting stability of Metal Complexes \# w.r.f. to Nature of Metal \& ligand

Day-5 Detection of Complextion in volution
Day-6 Determination of binary formation Constant by PH-Mery. Method
Day -7 Detverination of binary formation constant by Espectrophotometric Method.

LESSSON PLAN [MISC .-CHEMISTRY]
SEMESTER -P
$\#$ Paper - I [Inorganic Chemistry]
$\underline{\text { Unit-1 }} \rightarrow$ ©triochemistry $\$$ Bonding in Main Group Compounds
Day-1 $\rightarrow V \leqslant \varepsilon P R$ Model \& shortcomings
Day-2 \rightarrow Hybridization \& three Center bonds.
Day-3 \rightarrow Bents Rule \& Enorgeties of hybridization
$\geq a y-4 \rightarrow P \pi-P \pi, P \pi-d \pi$ bonding
$\frac{D a y-5}{6} \rightarrow$ Walsh diagram for fri- \& tetra atomic $\$ 6$ molecules.

Unit-II \rightarrow Metal -Ligand Equilibria in Solution
Day -1 \Rightarrow Thermodynamic \& Kinetic Stability of Complexes.
Day-2 \rightarrow Stepwise \& Overall formation constant \& their interaction

